Can Ca2+ fluxes to the root xylem be sustained by Ca2+-ATPases in exodermal and endodermal plasma membranes?
نویسندگان
چکیده
The pathway of Ca2+ movement from the soil solution into the root stele has been a subject of controversy. If transport through the endodermis is assumed to be through the cytoplasm, the limiting factor is believed to be the active pumping of Ca2+ from the cytoplasm into the stele apoplast through the plasma membrane lying on the stele side of the Casparian band. By analogy, for similar transport through the exodermis, the limiting step would be the active pumping into the apoplast on the central cortical side of the layer. Such effluxes are mediated by Ca2+-ATPases. To assess whether or not known Ca2+ fluxes to the stele in onion (Allium cepa) roots could be supported by Ca2+-ATPases, the percentages of total membrane protein particles required to effect the transport were calculated using measured values of membrane surface areas, an animal literature value for Ca2+-ATPase V(max), plant literature values for Ca2+-ATPase K(m), and protein densities of relevant membranes. Effects of a putative symplastic movement of Ca2+ from the exo- or endodermis into the next cell layer, which would increase the surface areas available for pumping, were also considered. Depending on the assumptions applied, densities of Ca2+ pumps, calculated as a percentage of total membrane protein particles, varied tremendously between three and 1,600 for the endodermis, and between 0.94 and 1,900 for the exodermis. On the basis of the data, the possibility of Ca2+ transport through the cytoplasm and membranes of the exodermis and endodermis cannot be discounted. Thus, it is premature to assign an entirely apoplastic pathway for Ca2+ movement from the soil solution to the tracheary elements of the xylem. To verify any conclusion with certainty, more detailed data are required for the characteristics of exo- and endodermal Ca2+-ATPases.
منابع مشابه
The pathways of calcium movement to the xylem.
Calcium is an essential plant nutrient. It is acquired from the soil solution by the root system and translocated to the shoot via the xylem. The root must balance the delivery of calcium to the xylem with the need for individual root cells to use [Ca2+]cyt for intracellular signalling. Here the evidence for the current hypothesis, that Ca2+ travels apoplastically across the root to the Caspari...
متن کاملMechanisms Involved in Osmotic Backwashing of Fouled Forward Osmosis (FO) Membranes
Organic matter leads to one of the biggest problems in membranes: fouling. Developing efficient cleaning processes is therefore crucial. This study systematically examines how alginic acid fouling formed under different physical and chemical conditions affect osmotic backwashing cleaning efficiency in forward osmosis (FO). The fouling layer thickness before and after osmotic backwashing was mea...
متن کاملK+-Dependent and Independent Na+/Ca2+ Exchangers
wide variety of physiological processes by relaying information within mammalian cells (6). For example, Ca2+ signals trigger fertilization, control development and differentiation, coordinate cellular functions, and even play roles in cell death. The large variety of functional effects are dictated by the spatial and temporal nature of the Ca2+ signals and by the cellular context in which they...
متن کاملDistinction between Endoplasmic Reticulum-Type and Plasma Membrane-Type Ca2+ Pumps (Partial Purification of a 120-Kilodalton Ca2+-ATPase from Endomembranes).
Two biochemical types of Ca2+-pumping ATPases were distinguished in membranes that were isolated from carrot (Daucus carota) suspension-cultured cells. One type hydrolyzed GTP nearly as well as ATP, was stimulated by calmodulin, and was resistant to cyclopiazonic acid. This plasma membrane (PM)-type pump was associated with PMs and endomembranes, including vacuolar membranes and the endoplasmic...
متن کاملCa2+-ATPases and their expression in the mammary gland of pregnant and lactating rats.
The transcellular Ca2+fluxes required for milk production must be rigorously regulated to maintain the low cytosolic Ca2+concentrations critical to cell function. Ca2+-ATPases play a critical role in the maintenance of this cellular Ca2+ homeostasis. Using RT-PCR and sequencing, we identified six Ca2+pumps in lactating mammary tissue. Three plasma membrane Ca2+-ATPases (PMCAs) were found (PMCA1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 136 4 شماره
صفحات -
تاریخ انتشار 2004